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Abstract of the Dissertation

Combining Spectroscopic and Structural Probes of Molecular Dynamics

by

Yusong Liu

Doctor of Philosophy

in

Chemistry

Stony Brook University

2021

Following the photoinduced excited state dynamics of polyatomic molecules
in their natural time scales is the key of understanding many fundamental
processes in physics, chemistry, and biology. The excitation induces coupled
electron and nuclei motion, leading to either radiative processes via fluores-
cence and phosphorescence, or non-radiative manners such as internal con-
version, isomerization, and dissociation. In this dissertation, I focus on the
non-radiative process which are usually involve with both energy changes
and structural transformations in femtosecond time scales. It is particularly
interesting to follow the energy conversion from the electric part into the nu-
clear degrees of freedom and explore how the initial structures will affect the
following reaction pathways. Thus developing different time-resolved tech-
niques that are sensitive to energy and/or structural changes are the most
effective way to view the ensuing dynamics. However, the quantum dynam-
ics of interests are filtered by the coordinate-dependent matrix elements of
the chosen experimental observable, where a single measurement observable
only gives a narrow viewing of the full quantum dynamics. Therefore, it is
only through a combination of experimental measurements and theoretical
calculations that one can gain insights into the internal dynamics. In this
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dissertation, I demonstrated a combined methodology with both spectro-
scopic and structural probes on coupled electronic and nuclear dynamics. I
interpreted the experimental measurement from trajectory surface hopping
calculations with high-level electronic structure theories, and I was able to
directly compare the measured observables with the calculated observables.

The spectroscopic probe comprises time-resolved photo-electron spec-
troscopy and momentum-resolved photoion spectroscopy, whereas the struc-
tural probe makes use of ultrafast electron diffraction. Several systems rep-
resent different molecular families are chosen as the targets in the com-
bined methodology. Chap. 1 provides an introduction into the molecular
dynamics, time-resolved pump-probe techniques ranging from spectroscopes
to diffraction methods, and theoretical treatment from quantum chemistry.
In Chap. 2, the combined spectroscopic and structural probes are described
with great details. The techniques as well as the treatment of the calculated
measurement observables are provided. From Chap. 3 to Chap. 5, I present
the experiential results with both spectroscopic and structural probes on sev-
eral small organic molecules. I start with a ring-type conjugated molecular
system, cis,cis-1,3-cyclooctadiene (C8H12) in Chap. 3, focusing on its photo-
isomerization dynamics with spectroscopic signatures, and extending the un-
derstanding from relatively rigid small molecules such as 1,3-cyclohexadiene
(C6H8) into larger, more flexible systems. In this measurement, the the-
ory calculation is used to interpret the dynamics. In Chap. 4, I turned to
explore whether and how the experimental measurements can be used to
benchmark theory. To do that, a TRPES measurement was carried out, and
the measurement was compared with the calculations at three levels of the-
ory, focusing on the much debated population trapping on the first bright
state (S2) of uracil. The comparison of the calculated and measured time-
resolved photoelectron spectra allows to draw conclusions regarding not only
the relative insights, but also the quantitative accuracy of the calculations at
the different levels of theory. In Chap. 5, a comprehensive study, combining
both spectroscopic and structural probes, was carried out on the dissociation
dynamics of diiodomethane (CH2I2), including time-resolved photo-electron
spectroscopy, momentum-resolved photo-ion spectroscopy, as well as ultrafast
electron diffraction. Finally in Chap. 6 provides a summary of the advan-
tages offered by the combination of spectroscopic and structural probes, and
provides prospects for the future work utilizing ultrafast soft X-ray for both
spectroscopy and diffraction studies.
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Chapter 1

Introduction and motivation

The photoinduced excited state dynamics of polyatomic molecules has been
the central topic for understanding many fundamental process in physics,
chemistry and biology, such as the basic steps involved in vision [1, 2],
the photoprotetion of DNA/RNA [3, 4, 5, 6], and how energy and charge
transfer facilities the light harvesting [7, 8], and energy conversion in pho-
toabsortion [9]. While these processes can be extremely complicated, lots of
insights are gained by understanding the basic dynamics steps at the sin-
gle molecular level and in their natural time scales. These dynamics usually
involve a complex redistribution of both electronic and nuclear energy, as
well the the on going structural transformation. Due to the coupling among
both electronic and nuclear degrees of freedoms, it usually gives rise to a wide
vary of radiationless processes, such as internal conversion [10, 11, 12, 13, 14],
isomerization [15, 16, 17, 18, 19], dissociation [20, 21, 22, 23, 24], and inter-
system crossing [25, 26, 27]. The common feature of these processes is that
they take place in very fast time scales from picosecond to femtosecond (10� 12

to 10� 15 s), and they occur in the space of molecular con�guration where the
electronic states or potential surfaces become close in energy or cross each
other. These places are often termed as conical intersections (CIs), allowing
population from one/several state(s) non-adiabatically transferring to an-
other, leading to fast and prominent radiationless decay. A typical example
is the internal conversion dynamics that the population in the excited state
is allowed to evolved through one/many CI(s) back to the ground state, in-
stead of dissociation. This has found signi�cant importance in DNA/RNA
when being exposed to UV radiations where the vast excess electronic energy
can be dissipated into nuclear degrees of freedoms, enabling the often called
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photoprotection.
Internal conversion gives an example of the fast charge transfer, energy

ow, and structure transformation taking places in the polyatomic molecules
where strong coupling of the electronic and nuclear degrees of freedom ap-
pears. Di�erent from the adiabatic picture under the BO approximation,
these non-adiabatic processes result in the breaking-down of the approxima-
tion, which induces huge amount of di�culty and challenges to follow the
certain dynamics in both experimental measurements and theoretical calcu-
lations. The strong coupling between the electronic and nuclear degrees of
freedoms results in the complex nuclear vibrational dynamics. Due to the
larger density of the vibrational states around the space where the the elec-
tronic states are being close or crossing each other, the spectral features in
energy/frequency are strongly broadened such that the conventional time-
independent spectroscopic methods are no longer e�ectively to be imple-
mented. Instead, more insights could be gained from the time-dependent
methods, in which following the transient yield, energy changes, or directly
structural transformations in the experimental perspective becomes much
more attractive.

Around the space with strong coupling, the time-scale of the dynamics
becomes extremely fast, and a temporal resolution with femtoscond level is
needed. Besides the temporal resolution, achieving the right optical wave-
length and/or wavelength tunability becomes extremely useful, but usually
di�cult and nontrivial. These all increase the challenge for developing ul-
trafast laser system as well as time-resolved techniques. Thanks to the ad-
vancement of the modern ultrafast laser systems in the past several decades,
designing time-resolved techniques within below picosecond time resolution
have become possible. The real breakthrough of the ultrafast time-resolved
measurements were achieved in the 1980 to 1990s with the availability of fem-
tosecond laser, particularly the ultrafast high-intensity laser systems. Sub-
sequently development including harmonic generations as well as the large
range wavelength tunable laser system enables a huge advance in both time-
resolved techniques and scienti�c investigation of molecular dynamics. This
opens a new region which is known as \Femtochemistry", awarded with No-
bel Prize in Chemistry 1999 [28].

Almost all approaches for performing time-resolved measurements can be
understood in terms of frame work of \pump-probe", which involves two,
local in time interactions with two separate pulses: a pump pulse creates an
initial, time-dependent state of the system, and a probe pulse subsequently
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Figure 1.1: Cartoon diagram illustrating the pump-probe frame
work based on TRPES measurement. This �gure is modi�ed from
Ref. [29] with authors' permission. Top: panel shows the optical pump and
probe pulse are focused into a vacuum chamber where the molecular sample
is ionized. The photoelectron energy can be measured via time-of-ight or
velocity-map imaging, where the time/position of the electrons encodes their
energy/momentum, respectively. Bottom left: After the pump pulse excites
a vibrational wavepacket on an excited state, the time-delayed probe pulse
ionizes the molecule, resulting in the ejection of an electron. Bottom right:
The electron yield is plotted as a function of both pump{probe delay and
the KE of the emitted electron.

interacts with the evolving system. The delay between the pump and probe
pulse are well-de�ned and-controlled, and after the probe interrogation, light
and/or charged particles are collected as the measurement observable, and

3



variation of the yield is monitored as a function of the time delay between
pump and probe interaction. Fig. 1.1 top panel depicts a cartoon example
of the pump-probe framework based on time-resolved photoelectron spec-
troscopy (TRPES) which involves a pump-probe scheme as well as vacuum
chamber for sample delivering and light/charged particle detection.

The pump pulse is almost always a short, coherent electromagnetic �led
(a laser pulse) and usually has a �nite spectral bandwidth, which typically
covers several vibrational quantum states. As shown in Fig. 1.1 bottom left
panel, the pump pulse results in a time-dependent state, formed from a linear
combination of the time-independent eigenstates and this coherent superpo-
sition is called a wavepacket. As the wavepacket evolves on the electronic
state potential, a probe pulse interacts with the system and produces an
observable recorded with respect to the delay of the pump. Compared with
the pump, the probe can be either a laser/X-ray pulse or a bunch of elec-
trons. As shown in bottom left panel of Fig. 1.1, a second laser pulse ionizes
the molecule, producing a photoelectron in the state of the cation and the
kinetic energy resolved photoelectron yields are monitored as a function of
pump-probe delay.

While the experimental techniques can extract information content in-
volved in the undergoing dynamics, they do need theoretical inputs, such
as accurate electronic structures and dynamics calculations, in order to in-
terpret the measurements. Particularly, a direct comparison between the
measured and calculated experimental observable usually plays a key role of
understanding the undergoing dynamics. However, it is usually non-trivial to
obtain high-level accurate electronic structures, and carrying out dynamics
calculations with high temporal resolution is usually computationally costly.
This is extremely di�cult when CIs become prominent in the chosen system
with many degrees of freedoms. In this dissertation, I perform measure-
ments that are able to follow the photoinduced excited state non-adiabatic
dynamics by combining multiple time-resolved techniques. My goal is to com-
pare and contrast the information content extracted from di�erent measured
experimental observables, and interpret the results by directly comparing
the measured observables with their relevant calculated observables. In the
rest of this chapter, I begin with the conceptual background of excited state
non-adiabatic dynamics. Next, the di�erent time-resolved experimental tech-
niques as well as the theoretical method are briey explained. Finally, I will
highlight the importance and advantage of combining di�erent experimental
techniques on excited state dynamics.
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1.1 Molecular Hamiltonian and Born-Oppenheimer
approximation

Before I step into the combined spectroscopic and structural methodology, it
is useful to briey review the basic background of the excited state dynamics.
In general, following nuclear dynamics on the electronically excited state is
complicated due to the coupling of the electronic and nuclear degrees of
freedoms. This is most due to the Coulombattraction between electrons and
nuclei, and it is this e�ect that is responsible for molecular bonding. When
taking into account all possible motions and interaction of the electrons and
nuclei, the general form of the full molecular Hamiltonian operatorH in
atomic units can be written as

Ĥ =
X

i

�r 2
e;i

2
+

X

i;j>i

1
jr i � r j j

+
X

j

�r 2
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2M j
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(1.1)
where r i represents electronic coordinates ofi th electron, R j the nuclear
coordinate for the j th nucleus, r 2

e;i is the Laplacian operator for thei th
electronic coordinate, r 2

N;j is the Laplacian operator for thej th nuclear
coordinate, M j is the mass ofj th nuclei, and Z j is the charge of thej th
nuclei 1. Each of the �ve terms has a simple physical meaning. The �rst two
term are only-electronic related and represent the kinetic energy of individual
electrons and potential energy between each pair,Te and Ve. The third and
fourth terms are the corresponding only-nuclear terms and represent the
kinetic energy of the nuclei pairs,TN and VN . It is the last term, VeN , that
is responsible for the aforementioned Coulombattraction between electrons
and nuclei. The time-independent Schr•odinger equation (TISE) of the total
wavefunction 	 with this molecular Hamiltonian can be write as:

H 	 (r 1; r2; : : : ;R1; R2; : : :) = E	 (r 1; r2; : : : R1; R2; : : :) (1.2)

It is not possible to solve the TISE for the full molecular Hamiltonian even
for the simplest molecules. In order to gain an intuitive insight, it is ex-
1In Equ. 1.1, the spin of the electrons are neglected for simplicity. Whereas, the spin
of the electrons usually plays an important role, especially in the molecules which have
atoms with larger atomic numbers. A typical example is the spin-orbit coupling e�ect
in the CH2IBr and CH 2I2 in Chap. 5 of this dissertation. The spin-orbit coupling from
iodine atom(s) from CH2IBr and CH 2I2 leads to two sets of asymptotic states along the
C-I dissociation coordinate which can be seen from Fig. 5.11. The energies between the
two asymptotes has a di�erent in the order of 1 eV.
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tremely useful to make approximation, such as the Born-Oppenheimer (BO)
approximation, which has been treated as the cornerstone of understanding
of chemical processes using quantum mechanics. [30]

It is an adiabatic picture based on the condition that the timescale for
electronic motion is generally much more rapid than that for nuclear motion
due to the relative masses of the electrons and nuclei, thus the electrons can
instantaneously adjust to the motion of nuclei and, in return, the nuclei can
be treated as moving in a time-averaged potential generated by the rapidly
moving electrons, such that the total wave function 	(r i ,R j ) in an any given
electronic statecan be assumed as:

	( r i ; R j ) =  (r i ; R j )� (R j ) (1.3)

 (r i ;R j ) is the electronic portion of the wave function and� (R j ) the nuclear
portion. One needs to keep in mind that (r i ;R j ) has a parametric depen-
dence on the nuclear coordinatesR j , since the electrons sensitive to changes
in nuclear position. On the other hand,� (R j ) is only dependent to the nu-
clear coordinates, since we consider the nuclei as evolving in a time-averaged
potential along with the nuclei repulsion generated by the rapid motion of
the electrons. This time-averaged electronic potential along with the nuclei
repulsion, is known potential energy surface, or PES.

Mostly, under the BO approximation of the separation of electronic and
nuclear wavefunction, the mapping of the electronic energy of the system as
a function of nuclear coordinates can be de�ned by the Schr•odinger equation
of the electronic part:

Ĥ e (r i ; R j ) = E e (R j )  (r i ; R j ) (1.4)

Where Ĥ e is the electronic part of the Hamiltonian andE e the electronic
energy. By solving this equation for the di�erent nuclear con�gurations along,
R j , the PES is mapped. If the nuclear con�guration is varied along any
particular coordinate and E e is calculated at all these �xed con�guration,
then the PES of the molecule along that particular vibrational coordinate
is generated. For a molecule withN (N � 2) atoms, mostly there are 3N -6
(3N -5, when N =2) nuclear internal degrees of freedom regardless of the 3
(2, whenN =2) rotational and 3 translational degrees of freedom.2 And the

2For linear molecules, there are 3N -5 internal degrees of freedom. For instance, CO2 and
CS2 have 4 since they only have 2 rotational degrees of freedom.
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potential energy is a function of all these nuclear internal coordinates. The
motion of the nuclei under BO approximation can be treated as propagating
on a PES, thus the chemical processes may be predicted if the shape of the
relevant electronic PES is known. The PESs for multiple states are also
available by solving the time-independent Schr•odinger equation (TISE) for
each electronic states. Fig. 1.1 bottom left panel shows a typical manifold of
hypothetical potential energy surfaces with both ground and excited states,
as well as the cationic state manifold. Conceptually, absorption of a photon
(the pump process) promotes the electrons to an electronic excited state, and
the nuclear wavefunction is projected on the manifold of vibrational states of
that excited PES, result in a wavepacket which moves on the excited PES.
In this manner, the PES becomes a very useful tool when understanding the
chemical processes or the nuclear motions along with the excited states.

1.2 Non-adiabatic dynamics and conical in-
tersection in polyatomic molecules

The validity of the adiabatic picture under BO approximation is typically ex-
cellent, since the electronic dynamics are generally much more rapid then any
nuclear motion. Another way of thinking is that the timescales for quantum
dynamics are generally dictated by the inverse of the energy-level spacing,
and the BO approximation is valid whenever the spacing between the PESs
(electronic spacing) are much larger than the spacing between the vibra-
tional levels (nuclear spacing). However, there are cases where the di�erent
PESs come close together, and the timescales for electronic dynamics in the
vicinity of this near-degeneracy can be comparable to, or even longer than,
the timescales for nuclear dynamics. Thus these adiabatic PESs are coupled
by vibrational motions and the BO approximation breaks down, in which it
is no longer possible to separate electronic and nuclear motions, leading to
the non-adiabatic processes. The di�erent electronic states become strongly
mixed in level crossings, implying there is a large change in electronic-state
character (i.e., the shape of the electronic wave functions) with respect to
any change in nuclear coordinate. The coupling between PESs become quite
large exactly when electronic states come close together in energy.

For a diatomic molecule with only one internal degree of freedom (vibra-
tion between the two nuclei), two potential energy curves corresponding to
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